A

.

JA \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

Vs

L \\\

y

y

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

/ Z l\\\

OF

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Esterel on Hardware [and Discussion]
Gerard Berry, C. A. R. Hoare and W. A. Hunt

Phil. Trans. R. Soc. Lond. A 1992 339, 87-104
doi: 10.1098/rsta.1992.0027

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1992 The Royal Society

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;339/1652/87&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/339/1652/87.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
' \

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware

By GERARD BERRY

Centre de Mathématiques Appliquées, Ecole Nationale Supérieure des Mines de Paris,
Sophia-Antipolis, 06565 Valbonne, France

KEsterel is a synchronous concurrent programming language for reactive systems
(controllers, protocols, man—machine interfaces, etc.). Esterel has an efficient software
implementation based on a well-defined mathematical semantics. I present a new
hardware implementation of the pure synchronization subset of the language. Each
program generates a specific circuit that responds to any input in one clock cycle.
The circuit is shown to be semantically equivalent to the source program. The
hardware translation is effectively implemented and used on the programmable
active memory Perle0 developed by J. Vuillemin and his group at Digital Equipment.

1. Introduction

Esterel (Berry & Cosserat 1984; Berry & Gonthier 1988; Boussinot & de Simone
1991) is a synchronous programming language devoted to reactive systems, i.e. to
systems that maintain a continuous interaction with their environment by handling
and generating hardware or software events. Its software implementation is
currently used in industry and education to program software objects such as real-
time controllers, communication protocols (Berry & Gonthier 1991; Murakami &
Sethi 1990), man—machine interfaces (Clément & Incerpi 1989), systems drivers, etc.

We present a hardware implementation of the pure synchronization subset of the
language that builds a specific circuit for each program. We state the correctness of
this implementation with respect to the mathematical semantics of the language. We
describe the experiments made so far and the possible uses of the hardware
implementation.

(@) The perfect sinchrony hypothesis

Esterel is an imperative concurrent language with very high-level control and
event manipulation constructs. It is based on a perfect synchrony hypothesis
(Benveniste & Berry 1991), which states that control transmission, communication,
and elementary computation actions take no time. The control structures include
sequencing, testing, looping, concurrency, and a powerful exception mechanism
which is fully compatible with concurrency. Communication between concurrent
statements is performed by instantaneously broadcasting signals.

The perfect synchrony hypothesis is shared by the synchronous data-flow
languages Lustre (Caspi et al. 1987; Halbwachs et al. 1991) and Signal (Le Guernic
et al. 1991). It makes programming modular and flexible, and it reconciles
input-output determinism and concurrency; the intrinsic non-determinism of
asynchronous languages such as Occam or Ada often makes reactive programming
and debugging needlessly difficult (see Berry 1989).

Esterel is rigorously defined by well-analysed mathematical semantics, given in
both denotational and operational styles (Berry & Gonthier 1988; Gonthier 1988).

Phil. Trans. R. Soc. Lond. A (1992) 339, 87-104 © 1992 The Royal Society

Printed in Great Britain 87

Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to ég(z%

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org

http://rsta.royalsocietypublishing.org/

//’ \\

/\
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

88 G. Berry

(b) Esterel in software

The standard KEsterel compiler is directly based on the mathematical semantics.
Sophisticated algorithms compile concurrency away and translate a concurrent
reactive program into an equivalent efficient sequential automaton implemented in
a conventional language like C.

In addition to the compiler, the Esterel environment includes graphical simulators,
symbolic debuggers, and interfaces to automata-based program verification systems

(Boudol et al. 1990). (c) Hsterel in hardware

By its mere conception, Esterel is well adapted to high-level programming of
circuit controllers; this logic synthesis task is known to be surprisingly difficult and
error-prone with standard techniques such as direct description of finite state
machines. The Ksterel programming primitives allow the user to write modular
programs such that small changes in a specification lead to small changes in a
program, a property that is not true of most presently used techniques; a typical
example is given in Berry & Gonthier (1991).

When dealing with hardware, we restrict ourselves to the Pure Esterel pure
synchronization subset of the language. Pure Esterel programs can be implemented
in hardware by feeding standard cap systems with the compiled automata. However,
this indirect implementation makes no use of the source program concurrency
structure. This is clumsy in hardware where concurrency is free, unlike in software.

The much better direct hardware implementation we present here is based on
Gonthier’s semantic analysis of Esterel (Gonthier 1988). It transforms each program
into a digital circuit that exactly reflects the source concurrency and communication
structure. The circuit computes the response to any input within one clock cycle,
however complex the program is.

The translation has been completely formalized and proved correct with respect to
the behavioural semantics of Esterel defined in (Berry & Gonthier 1988). In this
inference-rule based semantics, given a program state and an input, the current
output and the next state are defined by the unique transition proof that can be
established from the semantic rules. The circuit exactly computes that proof.

(d) Implementation and applications

The translation from programs to circuits has been implemented within the
existing KEsterel compiler. We have run very successful experiments using the
Xilinx®-based Perle programmable coprocessor developed at Digital Equipment
Paris Research Laboratory by J. Vuillemin et al. (Bertin et al. 1989; Shand et al.
1990).

We are currently investigating two kinds of applications: implementing existing
Esterel programs in hardware to match high performance constraints, and
programming hardware controllers and control parts of complex circuit in Esterel.

The data-flow oriented synchronous language Lustre has also a hardware
implementation based on its mathematical semantics. Ksterel and Lustre are
complementary and can be used in conjunction for general circuits handling both
control and data.

(e) Structure of the paper

We present the Pure Esterel language and its intuitive semantics in §2. The
hardware translation is explained by examples in §3. In §4, we give hints on the

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Fsterel on hardware 89

mathematical aspects and on the correctness proof. We discuss actual implemen-
tation and experiments in §5.

The more detailed paper (Berry 1991) presents the formal techniques and
correctness proof. The translation presented there works only for a restricted kind of
Esterel programs. The restrictions have been removed recently, and a fully complete
translation will be presented in a forthcoming paper.

2. Pure Esterel

We first present the basic objects manipulated by Pure Esterel programs: signals
and events. We then present the basic language on which the semantics is defined and
the full language that includes user-friendly statements definable from basic
statements. We give enough material for the paper to be self-contained, but we do
not detail fine points nor the Esterel programming style, see the Esterel
documentation for such information (Berry & Gonthier 1988 ; Boussinot & de Simone
1991).

(@) Signals and events

Pure Esterel deals with signals S, S,,...and with events K, K, ... that are sets of
simultaneous signals. A signal that belongs to an event is present in that event,
otherwise it is absent.

The execution of a program associates a sequence of output events with any
sequence of input events. The program repeatedly receives an tnput event K, from its
environment and reacts by instantaneously building an output event K, which is
synchronous with £, in the sense that any external observer observes a single event
E, U ;. This is also true of any other program placed in parallel.

The flow of time being entirely defined by the sequence of reactions to input
events, we also call a reaction an ¢nstant. This give meaning to temporal expressions
such as ‘instantaneously’ or ‘immediately’, which mean ‘at the same instant’, or
‘from then on’, which means ‘after the current instant included’, or ‘in the strict
future’, which means ‘after the current instant excluded’.

We assume that each input event contains a special signal tick. This is a slight
addition to the original language of Berry & Gonthier (1988). Being always present,
the tick signal is analogous to the constant 1 in circuits; when programming digital
circuits, it naturally denotes clock ticks.

(b) Modules

The basic Pure Esterel programming unit is the module. A module has an interface,
which specifies its input and output signals, and a body, which is a statement that
specifies its behaviour. The body can use any number of local signals for internal
broadcast communication. To achieve modular programming, a module can
instantiate other modules. Instantiation is done by inline code replacement and will
not be described here. Here is a sample module definition:

module M:

input I1, I2;

output 01 ;

statement.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

\

A

4

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

90 G. Berry

(¢) Bastic statements

The basic statements of Pure Esterel are:

nothing

halt

emit S

stat,; stat,

loop stat end

present S then stat, else stat, end

do stat watching S

stat, || stat,

trap T in stat end

exit T

signal S in stat end
One can use brackets ‘[’ and ‘]’ to group statements; by default, *;’ binds
tighter than ‘||’. Both then and else parts are optional in a present statement.

The statements are imperative and manipulate control and signals. The
trap-exit mechanism is a exception mechanism fully compatible with parallelism.
Traps are lexically scoped.

The local signal declaration ‘signal s in state end’ declares a lexically scoped
signal S that can be used for internal broadcast communication within stat.

(d) The intuitive semantics

The intuitive semantics describes control transmission between statements and
signal broadcasting. A statement can start at some instant and remain active until
it releases the control at some further instant, either by terminating or by exiting a
trap. A statement that terminates or exits at the same instant it starts is said to be
stantaneous. When an active statement does not terminate and exits no trap at an
instant, it is said to wait at that instant; it will be re-activated at the next instant.

1. nothing terminates instantaneously.

2. halt never terminates nor exits. It always waits.

3. An ‘emit S’statement broadcasts the signal S and terminates instantaneously.

4. When started, a sequence °‘stat,;stat,” immediately starts stat, and behaves
accordingly. If and when stat, terminates, stat, starts immediately and determines
the behaviour of the sequence from then on. If and when stat, exits a trap T, so does
the whole sequence. Notice that stat, is never started if staf, always waits or exits a
trap. Notice also that ‘emit S1; emit S2’ emits S1 and S2 simultaneously and
terminates instantly.

5. Aloop acts as an infinite sequence. When started, ‘1oop stat end’ immediately
starts its body stat. When the body terminates, it is immediately restarted. If the
body exits a trap, so does the whole loop. To prevent infinite instantaneous loops, the
body of a loop is not allowed to terminate instantaneously when started.

6. When a ‘present S then stat; else stat, end’ statement starts, it starts
immediately stat, if S is present in the current instant and stat, if S is absent. The
present statement then behaves as the corresponding branch.

7. The ‘do stat watching S’ watchdog statement starts immediately its body stat
and uses S as a time guard for its execution:

If stat terminates or exits a trap strictly before S occurs, then the watching
statement instantaneously terminates or exits the same trap. The time guard has
no effect.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \\\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Fsterel on hardware 91

If, in the strict future of the starting instant, S occurs while stat is still active,
then the watching statement terminates instantaneously, stat being not activated
at the corresponding instant. In other words, the occurrence of S at an instant
instantaneously kills stat without letting it perform any action at that instant.
Notice that an occurrence of S at the starting instant does not provoke

termination and is simply ignored; a variant where an initial S does provoke
immediate termination can be derived from other basic statements. A variant where
the body stat is activated a last time when S occurs can also be derived. Both variants
will be presented below.

8. When started, a parallel statement ‘stat, || stat,” immediately starts stat, and
stat, in parallel. A parallel terminates instantly if and when both stat, and stat, are
terminated ; they can terminate at different instants, the parallel waiting for the last
one to terminate. If, at some instant, one statement exists a trap T or both
statements exit the same trap T, then the parallel exits T. If both statements
simultaneously exit distinct traps T1 and T2, the parallel only exits the outermost of
these traps, the other one being discarded.

9. The statement ‘trap T in stat end’ defines a lexically scoped trap T within
stat. When the trap statement starts, it starts immediately its body stat and behaves
accordingly until termination or exit. If the body terminates, so does the trap
statement. If the body exits T, then the trap statement terminates instantaneously.
If the body exits an enclosing trap U, so does the trap statement (traps propagate).

10. An ‘exit T’ statement instantaneously exits the trap T.

11. When started, the statement ‘signal S in stat end’ immediately starts the
body stat with a fresh signal S, overriding the one that may already exist. The
statement behaves as its body from then on.

A global coherence law relates signal emission and testing:

A signal is present at an instant if and only if it is received as input by the environment

or emitted by the program itself at that instant.

(i) Remarks

An emission is transient, and a present test is instantaneous. There is an
asymmetry between present and absent signals. The emit statement sets a signal
present, but no statement sets it absent: by the coherence law, this is just the default.

A loop never terminates by itself; the only way to end it is to kill it by elapse
an enclosing time guard or by explicitly exiting an enclosing trap from within the
loop or from a statement placed in parallel with the loop.

Exiting one branch of a parallel terminates instantaneously the corresponding
trap and therefore kills the whole parallel. All parallel branches are activated at the
exit instant. For example, in ‘emit S || exit T’, the left branch emits S and
terminates, the right branch exits T, so that the parallel emits S and synchronizes
both branches by deciding to exit T.

(e) Hxamples
In a guard, S can be any signal, a second as well as a centimetre, a clock tick, or
generally any kind of interrupt. Therefore, each signal is seen as defining its own time
unit; one can say ‘stop in less than 3 m’ as well as ‘press a button every 2 s’.
The only basic statement that provokes waiting is halt. To take a finite but non-
zero amount of time, a statement must involve halt statements guarded by
watching statements. The simplest example is ‘do halt watching S’ which waits

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

L2

TaNsactions | HE ROVAL

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

92 G. Berry

for S and terminates: by itself, the body halt would wait forever, but the enclosing
‘watching S’ guard Kills it and terminates when S occurs. Hence the statement is
guaranteed to ‘last exactly one S’ from the time it is started (remembering that an
S present when the statement starts is not taken into account). Anticipating the
definition of derived statements, we write it as “‘await S’.

The watching primitive that waits for an event to stop or preempt a computation
is much more powerful than the await primitive that waits for an event to start a
computation and has been the basis of most event manipulation languages so far. In
particular, we have easily derived await from watching, while the converse is non-
trivial.

Nesting temporal statements based on different time units is the main
characteristic of the Esterel style. Here is a toy program that emits repeatedly O
every I until reception of a signal STOP:

do

loop
await I; emit O
end

watching STOP
The output O is not emitted when STOP occurs, even if I is present, since the inner
loop is preempted by the external watching statement at that instant. This
strongly preemptive behaviour tends to be the most useful one. However, there are
cases where a weaker preemption is needed. For example, one may want to emit O
a last time when STOP occurs; one then uses a trap statement:

trap T in

loop await I; emit O end
I
await STOP; exit T

end
This works since when one branch of a parallel exits a trap that encloses the parallel
the other branch is activated in the corresponding instant before being killed. It can
perform its ‘last will’. Weak preemption is easily derived from strong preemption;
the converse derivation would be complex.

In a watching S statement, the body is started if S is present at the starting
instant, the occurrence of S being ignored. In some cases, one wants S to provoke
immediate termination even at the starting instant. For this, one writes:

present S else do stat watching S end
readily abbreviated into the derived statement

do stat watching immediate S
The following toy example illustrates the preemption mechanism involved in
concurrent exits:

trap Tl in

trap T2 in

emit S1; exit T1
!

exit T2; emit S2
end;
emit S3

end
The first parallel branch emits S1 and exits T1. The second branch exits T2 but does

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 93

not emit S2 since an exit does not terminate. The body of the parallel exits
simultaneously T1 and T2; since only the outermost trap matters, T2 is discarded
and T1 propagates. Hence S3 is not emitted, and the outermost trap terminates with
only S1 emitted. The exit propagation mechanism is deterministic and very useful

in practice. (f) Full Esterel

The full language has many user-friendly derived statements. We briefly describe
some of them, referring to Berry & Gonthier (1988) for the complete list and the
expansions into basic statements.

We have already seen two derived constructs: the simple await statement and
the immediate guard variant. All test or guards can involve boolean expressions,
as in ‘present [S1 and S2]° or ‘do stat watching [not S]’, as well as
occurrence counts, as in ‘await 3 S’.

A timeout clause can be executed when a watching statement terminates by
elapsing its time guard before body termination :

do stat, watching S timeout staf, end
Several events can be waited for in an await statement:

await

case S1 do stat,
case S2 do stat,

end
To ensure determinism, only stat, is started if both S1 and S2 occur simultaneously.

There are two temporal loops: ‘1oop stat each S’ and ‘every S do stat end’. The
first loop starts stat at once, and kills and restarts it afresh whenever S occurs. The
second loop is similar but initially waits for S to start stat.

The emit S statement emits S only at the current instant; it is often useful to emit
a signal continuously, that is at all instants. For this, one uses the ‘sustain S’
statement that simply abbreviates ‘loop emit S each tick’.

Finally, a general exception handling mechanism extends basic traps by providing
exception handlers (see Berry & Gonthier (1988) for details).

3. Principle of the hardware implementation

I show by examples how to translate a Pure Esterel program into a digital circuit
that computes the reaction of the program to any input in one clock cycle. In the first
examples, the translation will be structural. In the general case, some logic
duplication is needed to correctly handle loops; I give some hints on how to perform
this duplication, but give no details.

(a) A4 first example

The first example is the following program that involves no parallel statement:
module M:
input I, R;
output O;
loop

loop

await I; await I; emit O

end

each R.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
4 \
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

R
A\

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

94 (. Berry

of bao

R s’ a
® Watch
| s a ! [}
.—> \\ i
c S
Present
s1 at s4 4 c't c'f
ct
s a c s’ a c
Watch Watch
5’ c | s a c |
3 ¥ N {
2| la2 c S s3| |a3 c S
Present Present
Boot ct cfl s c't cf
4 c4 c8
N - o7
N
s"a ¢ I c1 ssa ¢ | ¢t
Hait Halt

Figure 1. First example.

The behaviour is to emit O every two I, restarting this behaviour afresh each R. The
body’s expansion into basic statements is:

loop

do
loop
do
halt
watching I;
do
halt
watching I;
emit O;
end
watching R

end
The corresponding circuit is drawn in figure 1. It has two input pins for I and R and
one output pin for 0. There are four kinds of cells, called Boot, Watch, Present,
and Halt. Cell output pins are primed.

In the sequel, we say that a wire is high or set if it has value 1 and low or reset
if it has value 0. We say that a register is set if it gets value 1 and reset if it gets
value 0.

The Boot and Halt cells each contain one register clocked by the global circuit’s
clock. The other cells are purely combinational. The Present cells are used for

Phil, Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 95

present and watching source statements, each source ‘watching S’ statement
being conceptually rewritten into ‘watch present S’; this slight syntactic
modification simplifies the cell design and the implementation of signal boolean
expressions.

The circuit contains three sorts of wires: the selection wires s0—-s5, the activation
wires a0-ab5, and the control wires cO—c8. The unconnected ¢ and ¢’1 pins of Halt
cells corresponds to other wires unused here and described later on. Whenever two
wires go to the same place, they are implicitly assumed to be combined by an or gate.

The selection and activation wires go in reverse directions and form a tree that is
called the skeleton of the circuit. This tree is determined by the nesting of halt,
watching, and || statements in the source program, following the abstract syntax
revealed by the source code indentation. The leftmost Halt, Watch, and Present
cells correspond to the first await in the original source program, the rightmost ones
correspond to the second await.

The selection wires are used to determine which part of the circuit can be active
in a given state: in our example, both await statements are in mutual exclusion, and
only one of them can be active at a time. When the first await is active, the wires
s2,sl,and s0 are set. When the second await is active, the wires s4, s3, and s0
are set. The sources of the selection wires are the Halt cell registers. The upper
selection wire s0 is unconnected here, but we left it there to emphasize the structural
character of the translation.

The activation and control wires bear the flow of control. The activation wires
handle preemption between watching statements. In our example, the outermost
watching preempts the innermost one: by the semantics of Esterel, if R is present,
the outermost watching terminates without letting its body execute. The upper
activation wire a0 is always set. The control wires transfer the control between
statements; for example, they are generated by sequences and present tests.
Furthermore, there is a control wire for each signal; a signal is present if and only if
its wire is set.

The cells are defined as follows: =1
Boot {

=-n
§=s
Watch{c¢ =sAa
a =c
ct=cAS
cf=cA~S

Halt ¢ =cV (@ A 8)

Present{

’

where the symbol ‘=’ is used for registers. Registers are supposed to contain
initially 0.

The output signal b of the Boot cell is high at first clock tick and remains then low.
For a Halt cell, the value of the output signal s’ is initially low and then that of
¢ V (a A s)delayed one clock cycle. Hence a register is set either if an incoming control
wire is set or if the activation wire is set and the register was already set (this to
prevent setting the second Halt register in a term such as ‘do halt; halt
watching S’ when a is set). The definition of Halt is only temporary: further pins
will be added in §3b.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

L2

TaNsactions | HE ROVAL

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

96 G. Berry

(i) A sample execution

At boot time, the Halt cell registers contain 0 and the selection wires are all low ;
the boot control wire b is high. Because of the cell equations, all other wires are low.
Hence the only effect is to set the leftmost Halt register.

On next clock tick, assume that I is present and R is absent. Then s2, s1, and s0
are set by the Halt register. Since a0 is always set, the control flows down by setting
cO that triggers the test for R in the upper Present cell. Since R is low, the control
flows through the ¢’f pin and sets c2, which is connected to the ¢ input pin of the
Watch cell. This pin is directly connected to the o’ output pin, and the control flows
through al and a4 (which are connected with each other and form in fact a single
equipotential). Since both s2 and al are high, the leftmost Watch cell sets ¢3 and
the leftmost Present cell sets c4 since I is present. This sets the rightmost Halt
register. Since s4 is low, the rightmost Watch cell is inactive. Having no incoming
control set, the leftmost Halt register is reset. This terminates the first ‘await I’
statement.

On next clock tick, if I is present, the execution is symmetrical: the rightmost
Halt is reset and the leftmost one is set. The wires set are s3, s4, a0, c0, c2,
al = a4, c6,and c7. Since c7 is also connected to the output 0, this output is set. If,
instead, R is present, the wires set are s3, s4, a0, c0, c1, and one back to the state
just after boot, If neither I nor R are present, then the wires set are s3, s4, a0, cO,
c2, al = a4, c6, c8, and a3, and the state is simply restored as expected.

(b)Y Translaling parallel and exceptions

The most complex operator is of course the parallel one: it must synchronize the
termination of its branches and propagate exceptions. Consider the following
program fragment:

trap T in

await Sl
I
present S2 then exit T end

end
The corresponding circuit fragment is shown in figure 2. The leftmost Watch-
Present-Halt cell group is generated by ‘await S1°. The rightmost Present cell
is generated by ‘present S2°. The branches are simply put in parallel and
synchronized by the Parallel cell. The circuit fragment starts when it receives
control by setting the c0 wire.

The Parallel cell has two parts: the fork part, which involves the six leftmost
pins, and the synchronization part, which involves the eight rightmost ones.

The fork part is simple: selection wires are gathered by an or gate and activation
and control are dispatched to branches.

The synchronization part is more subtle. The pins ¢0, c1, and ¢2 record the different
termination modes: ¢0 means termination, ¢l means waiting, and ¢2 means exiting
T. With each termination pin ¢i is associated a continuation pin ¢’¢. (In fact, ¢’1 is not
really a continuation in a usual sense: it is recursively linked to the ¢l entry of the
enclosing Parallel cell when such a cell exists.)

The synchronization realized by the parallel statement was defined in the intuitive
semantics; it amounts to computing the max of the termination modes of the
branches, activating only the corresponding continuation: waiting preempts
Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

I \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 97

sf a0 c0 i0 8 9 «cl0

NN

s’ ac i ¢0 ¢t ¢c2
Parallel
s a ¢ i ¢c0 ¢l c2

s’ a
Watch
A S1 S2
¥ |
c S c S
Present Present
s2 a2 c't c'f c't c'f

c3

s’ a ¢ i c1

Halt

Figure 2. Second example.

termination, trap exit preempts waiting, and outermost traps preempt innermost
ones. Therefore the synchronization device is simply a priority queue.

In our example, the left branch can wait, as signalled by setting wire c5, or
terminate, as signalled by setting wire c¢3. The rightmost branch can terminate or
exit T as respectively signalled by setting wires c7 and c6. Since exiting T or
terminating the parallel lead to the same continuation, the continuation wires c8
and c10 will reach the same input pin in any global circuit in which our fragment
is placed.

When the right branch exits T, the leftmost branch must be killed. This is the role
of the inhibition wire i1 that sends an inhibition signal to the halt register. In an
actual execution context, the inhibition signal can also come from an enclosing
parallel statement itself killed by some trap exit. It is then received on pin ¢ by the
wire 10.

The final equations of the Parallel and Halt cells are:

s =s
o =a
¢ =c

c'2 =c2

Parallel{ pl =¢2
cl=cl A-pl
p0=rcl V pl
c'0=c0 A - p0

=1V pl
Phil. Trans. R. Soc. Lond. A (1992)

+ Vol. 339. A

http://rsta.royalsocietypublishing.org/

A

ya

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

(3

A

/
/

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

98 G. Berry

cl=cV(aAs)

Halt .
@ {s’:=(c’ V(e AS8) AT,

where p0 and pl are local wires used to compute the parallel continuation and
inhibition values: if ¢z is the selected continuation, ¢i is set and all continuations ¢j
are reset for j < ¢, and ¢ is set if pl is.

(1) A sample execution

Assume the circuit receives control by c0 and therefore sets c1.

1. Assume S2 is present. Then c5 is set by the Halt cell and c6 is set by the right
Present cell. The parallel cell selects the appropriate continuation c10 and inhibits
the halt register by setting i1.

2. Assume instead S2 is absent. Then c5 is set by the Halt cell and c7 is set by
the right Present cell. The selected continuation is c9; it signals waiting to an
eventual enclosing parallel statement. Since the inhibition wire 11 is low, the Halt
cell register is set. The circuit then remains in the same state in further clock cycles
as long as the activation wire a0 remains high and S1 remains low: the wires set arc
s2,sl,s0,al, c2,c4,a2, c5,and c9. If a0 remains high and S1 is set, the wires
set are s2, sl, s0, al, c2, c3, and c8. The whole construct terminates and the
register is reset since c1 and a2 are low. The incoming activation wire a0 can become
low before S1 occurs, for example because an enclosing watchdog clapses. Then the
Halt register is also reset.

(ii) General parallel cells

In general, the size of the priority queue in a parallel cell depends on the number
of nested traps exited from within its source parallel statement. The number of pins
ct, ¢’i for i = 2 correspond to the number of enclosing traps. With no trap, there is no
such pin. The example explained one level of trap. With two levels of traps, as in

trap U in

trap T in
el
end

end
there would be a pin ¢2 for T and a pin ¢3 for U, and so on.

(¢) Summary of the translation

The translation is done by connecting together cells corresponding to source
statements. The cells are the same for all programs, but the parallel cells have a
variable continuation arity according to the number of enclosing traps.

The logical skeleton of the translation is given by the three of Halt, Watch, and
Parallel cells which mimics the tree of source halt, watching, and || statements.
Fach edge of the tree is composed of an upward selection wire and a downward
activation wire. Two sets of wires reinforce the skeleton: control wires that signal
waiting and go upwards from Halt and Parallel cells to Parallel cells, and
opposite tnhibition wires that force resetting the Halt registers in case of exceptions.

In addition to the above cells, one finds a Boot cell used to boot the circuit, and
Present cells gencrated by source present and watching statements. These cells
are linked together and to skeleton cells by control wires. ltach Present cell also
receives as input a signal wire. Signal wires come either from input signal pins or from

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 99

local signal cells, which are simply or gates. Control wires transfer the control from
cell to cell. They also emit signals by being connected to output signal pins or to
local signal or gates. The wiring of control wires is determined by a continuation
analysis (Berry 1991).

(d) Loops and logic duplication

The simple translation above does not translate correctly all programs, because it
does not handle properly the subtlety of the 1oop construct. The difficulties appear
in loops containing local signal declarations or parallel statements.

First, it is not possible to allocate a single wire for a local signal: even within
a single reaction, an Esterel signal can have several independent incarnations.
Consider a statement of the form

loop

signal S in stat end

end
When the body terminates, it is restarted at the same instant with a fresh signal S.
This is made obvious by unfolding the body to get

loop

signal S in stat end;
signal S in stat end

end
which is semantically equivalent and where there are clearly two distinct signals that
can be independently present or absent at the instant where control flows between
the two occurrences of stat. In the actual translation process, we detect this fact and
duplicate some of the loop body’s logic.

The second incorrectness is more subtle. The simple translation of the statement

loop

await S

end
is correct, but the simple translation of the equivalent statement

loop

await S

[

nothing

end
would be incorrect since it would involve an unstable electrical loop through the
parallel synchronizer: when S occurs, the parallel terminates, the loop restarts it
immediately and the parallel waits on await S. But waiting justs inhibits
termination, hence the combinational loop : the synchronizer is asked to perform two
distinct synchronizations at a time. Here again, logic duplication is necessary and
cleverly performed by the actual translation.

In all cases, logic duplication concerns only control wires and synchronizers. The
registers and skeleton are kept untouched. In the worst (artificial) case, logic
duplication can square the size of the logic; in practice, one only observes small linear
expansion factors, and optimization efficiently reduces the logic, see §5.

Phil. Trans. R. Soc. Lond. A (1992)

4-2

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AN
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

100 G. Berry

4. Correctness of the translation

The translation into a circuit is itself formally defined by a set of structural
equations. See Berry (1991) for the subcase where no logic duplication is necessary ;
the general translation is similar and will be published in a forthcoming paper.

So far, I have presented the generated circuits and their behaviour on a purely
intuitive ground. The correctness of the translation relies on the fact that one can
also view circuits as mathematical structures deeply related to the proof theory of
the Esterel semantics. I briefly describe the behavioural semantics, the haltset coding
of states, and the correctness proof arguments.

(@) The behavioural semantics

The behavioural semantics (Berry & Gonthier 1988) defines the reaction of a
program to an input event using Plotkin’s Structural Operational Semantics
technique (Plotkin 1981). It defines transitions of the form

0
M— M,

I

where M is a module, I is an input event, O is the corresponding output event, and
M’ is a new module that will correctly respond to the next input events. In other
words, M’ is the new state of M after the reaction to /. The reaction to an input
sequence is then defined inductively by chaining elementary reactions:

0, 0, On Onta
MM, — My M, — M, —5 .
I, I, In Iy

To compute a transition

0 Bk
M——M’, we use an auxiliary relation stat — stat’
I B

on statements. Here £ is the current event in which stat evolves, £’ is the event made
of the signals emitted by stat, and £ is an integer termination level that codes the way
in which stat terminates or exits, as explained in §3. The auxiliary relation is defined
by a set of inference rules (Berry & Gonthier 1988; Berry 1991).

The current event £ is made of all the signals that are present at the given instant;
because of the coherence law, £/ must contain the set £’ of emitted signals, which in
turn depends on /. Hence £ and £ will be computed as fixpoints. What makes the
semantics non-trivial is the non-monotonic character of the fixpoint computation,
implied by the possibility of testing both for presence and absence of signals.

Not all Esterel programs have well-defined semantics; some exhibit causality
defects analogous to unstable electrical loops in circuits (see Berry & Gonthier 1988;
Berry 1991). For example, the program :

signal S in

present S else emit S end

end
has no meaning since S should be present if and only if it is absent. It is similar to
a circuit equation of the form x = =« that has no solution. The precise study of the
existence of (causal) solutions in both Esterel and circuits is delicate and well outside

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I \\
\
) \

/

A
(

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 101

the scope of this paper. In practice, we restrict ourselves to programs that generate
loop-free circuits, which obviously have deterministic behaviours; this property is
statically checked by the Esterel compiler. Our experience shows that the class of
LEsterel programs that yield such circuits covers most practical cases.

(b) The haltset coding of states

The technical basis of the hardware translation is the haltset coding of states. Call

a deriwvative of stat any statement stat’ that can be reached from stat by some sequence
0

of reactions —— provable in the behavioural semantics. The derivatives bear an
I

important structural relation with the source term stat: any derivative can be
unambiguously coded by a haltset H of stat, that is by a set of occurrences of halt
statements in the expansion of stat into basic statements. Each halt represents a
position on which the control is currently waiting, and a haltset acts as a distributed
program counter.

Given a haltset H in stat, one defines a new statement #(stat™) that represents the
state of stat when the control is on H. See the equations in Berry (1991).

(¢) The correctness proof

The key correctness argument is that the circuit acts as a fixpoint solver and as a
(fast) theorem prover for the semantics. The circuit itself can be viewed as a folding of
all possible semantical proof trees of all possible derivatives tnto a graph structure. Given
a state of the circuit —i.e. a derivative — and an input, the wires set represent exactly
the right proof tree.

Technically, given any derivative stat’ of stat and any input event [, the
behavioural semantics determines a reaction

o

stat’ — stat”.
1

Let H and H” be the haltsets of stat’ and stat”. Then, one proves that having the
registers of H’ set in the circuit exactly amounts to perform a reaction of stat’ =
R(stat’), that the set of Halt registers set after the circuit tick is precisely H”, and
that the outputs are those of O.

To prove this, one shows inductively that for any statement stat and haltset H the
selection wires precisely implement the %() function, that setting the input control
wire ¢ amounts to execute stat, and that setting the activation wire a amounts to
execute Z(stat™). Since both the circuit and the behavioural semantics have unique
solutions, these solutions coincide and the circuit indeed compute the required
semantics. See Berry (1991) for the detailed proof.

5. Optimization and implementation

The reader may find that our circuits contain lots of wires and of logical levels,
even for simple programs. In fact, there is much room for automatic optimization.
Many wires are simply connected with each other. Constant folding simplifies many
gates. Many generated logical functions are readily grouped by logic optimizers.

Therefore, our circuits should not be directly implemented ; they should instead be
given as input to logic optimizers. We presently use optimizers based on binary
decision diagrams (or BDDs) (see Brayton et al. 1990; Coudert & Madre 1990; Savoj
Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/;«\\
) \

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

102 G. Berry

et al. 1991). They drastically reduce the actual size of circuits. They can also discover
redundancies between registers and suppress some of them.

Altogether, we believe that we can obtain final circuits that are as good as carefully
hand-designed ones. Because of the power and efficiency of BDD-based optimization
techniques, we think there is no need to search for a more sophisticated translation
process.

We have experimented with our hardware implementation on the Perle board
developed at Digital Equipment Paris Research Laboratory (Bertin et al. 1989). It
congists of a set of 25 synchronous Xilinx programmable logic cell arrays placed on
a board and controlled by a conventional workstation.

The translation is performed by a specific processor integrated in the standard
Ksterel compiler. The generated logical circuit is fed into BDD-based optimizers and
finally into the Perle cap system. Using this environment, the turnover is of the
order of 15 min from source program to running circuit for a medium-size program.
The execution environment provides a symbolic debugger from actual circuit states
to source code and a dynamic exact speed measurement from benchmarks.

The applications we have handled so far are man-machine interfaces, real-size
local area network controllers (Mejia 1989), and various circuit controllers including
those used in the Perle board itself to communicate with the workstation bus.

Program correctness proofs can be performed using either the verification tools of
the Esterel or Lustre environments or any circuit verification system.

6. Conclusion

Although Esterel was not at all designed as a hardware description language, the
work presented here shows it is well suited to very high-level verified hardware
generation. The Esterel style is well adapted to hardware controller programming.
The hardware generation is directly based on the formal semantics and is proved
correct. After logic optimization, the generated circuits are of excellent size and
speed quality.

To our knowledge, the closest related works are the hardware implementation of
Lustre and SML (Clarke et al. 1991). The Lustre and Esterel implementations are
developed in parallel and are fully compatible. To our belief, compared with SML,
Esterel is much more elaborate as a programming language, having in particular
watchdogs, exceptions, and instantaneous broadcast. Our implementation is direct
and does not use a translation to automata, although such a translation is also
available. We need more experience to compare the relative qualities of the
languages and of their verification tools.

This work was motivated by discussions with Jean Vuillemin and Patrice Bertin from Digital
Equipment Paris Research Laboratory (PRL), done partly in this laboratory, and co-financed by
INRIA. It owes much to the work of Georges Gonthier on the semantics of Esterel. The actual
implementation on Perle0 was done at PRL under the supervision of Patrice Bertin, who provided
invaluable help. The experiments with BDD optimizers were conducted by Olivier Coudert and
Jean-Christophe Madre at BULL and by Hervé Touati at PRL.

References

Benveniste, A. & Berry, G. 1991 The synchronous approach to reactive and real-time systems. In
Another look at real time programming Proc. IEEE 79, 1270-1282.

Berry, G. 1989 Real-time programming : general purpose or special-purpose languages, information
processing 1989 (ed. G. X. Ritter), pp. 11-17. Elsevier.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A

ya

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A

A
Y

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Esterel on hardware 103

Berry, G. 1991 A hardware implementation of pure Esterel. Proceedings International Workshop
on Formal Methods in VLSI. Springer-Verlag LNCS.

Berry, G. & Cosserat, L. 1984 The synchronous programming languages KEsterel and its
mathematical semantics. In Seminar on concurrency (ed. S. Brookes & G. Winskel), pp. 389-448.
Springer-Verlag Lecture Notes in Computer Science 197.

Berry, G. & Gonthier, G. 1988 The Esterel synchronous programming language: design,
semantics, implementation. INRTA Res. Rep. 842. Sci. Comp. Prog. (In the press.)

Berry, G. & Gonthier, G. 1991 Incremental development of an HDLC entity in Esterel. Comp.
Networks 22, 35—-49.

Berry, G., Couronné, P. & Gonthier, G. 1988 Synchronous programming of reactive systems: an
introduction to Esterel. Programming of future generation computers (ed. M. Nivat & K. Fuchi),
pp. 35-55. Elsevier.

Berthet, C., Coudert, O. & Madre, J. C. 1990 New ideas on symbolic manipulations of finite state
machines. Proceedings of International Conference on Computer Design (ICCD).

Bertin, P., Roncin, D. & Vuillemin, J. 1989 Introduction to programmable active memories. In
Systolic array processors (ed. J. McCanny, J. McWhirter & E.Swarzlander), pp. 301-309.
Prentice-Hall.

Boudol, G., Roy, V., de Simone, R. & Vergamini, D. 1990 Process calculi, from theory to practice:
verification tools. In Automatic verification methods for finite state systems, pp. 1-10. Springer-
Verlag LNCS 407.

Boussinot, F. & de Simone, R. 1991 The Esterel language. In Another look at real time programming.
Proc. IEEE 79, 1293-1304.

Brayton, R K., Hatchel, G. D. & Sangiovanni-Vincentelli, A. L. 1990 Multilevel logic synthesis.
Proc. IEEE 78, 264-300.

Caspi, P., Halbwachs, N., Pilaud, D. & Plaice, J. 1987 Lustre: a declarative language for
programming synchronous systems. Proceedings 14th Annual ACM Symposium on Principles of
Programming Languages, pp. 178-188.

Clarke, K., Lond, D. E. & McMillan, K. L.. 1991 A language for compositional specification and
verification of finite state hardware controllers. In Another look at real time programming. Proc.
IEEE 79, 1283-1292.

Clément, D. & Incerpi, J. 1989 Programming the behavior of graphical objects using Esterel.
Proceedings TAPSOFT °89, pp. 111-126. Springer-Verlag LNCS 352.

Coudert, O. & Madre, J. C. 1990 A unified framework for the formal verification of sequential
circuits. Proceedings of International Conference on Computer Aided Design (ICCAD), pp. 126-129.

Cousineau, G. 1980 An algebraic definition for control structures. Theor. Comp. Sei. 12, 175-192.

Gonthier, . 1988 Sémantique et modeles d’exécution des langages réactifs synchrones;
application a Esterel. These d’Informatique, Université d’Orsay, France.

Halbwachs, N., Caspi, P., Raymond, P. & Pilaud, D. 1991 The synchronous dataflow
programming language Lustre. In Another look at real time programming. Proc. IEEE 79,
1305-1320.

Kahn, G. 1988 Natural semantics. In Programming of future generation computers (ed. M. Nivat &
K. Fuchi), pp. 237-258. Elsevier.

Le Guernic, T., Gautier, T., Le Borgne, M. & Le Maire, C. 1991 Programming real time
applications with signal. In Another look at real time programming. Proc. IEEE 79, 1321-1336.

Mejia Olvera, M. C. 1989 Contribution a la conception d’un réseau local temps réel pour la
robotique. These de Docteur-Ingénieur, Université de Rennes, France.

Murakami, G. & Sethi, R. 1990 Terminal call processing in KEsterel. AT & T Bell Laboratories Res.
Rep. no. 150.

Plotkin, G. 1981 A Structural approach to operational semantics. Tech. Rep. DAIMI FN-19,
University of Aarhus, Denmark.

Savoj, H., Touati, H. & Brayton, R. K. 1991 The use of image computation techniques in
extracting local don’t cares and network optimization. Proceedings of IEEE International
Conference on Computer-Aided Design (ICCAD), pp. 514-517.

Shand, M., Bertin, P. & Vuillemin, J. 1990 Hardware speedups in long integer multiplication.
Proceedings 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 138-145.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

.\

4

N
A

TaNsactions | HE ROVAL

SOCIETY

4

OF

Downloaded from rsta.royalsocietypublishing.org

104 @. Berry

Discussion

C. A. R. HoarRe (University of Oxford, UK.). Does Dr Berry use the Xilinx
automatic placement and routing software ?

G. BErrY. Yes. The output of the compiler is simply an unplaced and unrouted
netlist. The compiler provides no meaningful placement information. However, any
other more efficient placement and routing tool can be used instead.

W. A. Hu~nt (Computational Logic, Inc., Texas, U.S.A.). What is the formal
connection between Lustre and Esterel ?

G. BErry. Both languages use exactly the same perfect synchrony concept and are
semantically compatible. Lustre is actually one of the target languages of the
Esterel-to-circuits compiler. Lustre and its variant Pollux that incorporates static
arrays are fully adequate to data-path description, while Esterel is much better for
controllers.

For the full Esterel language that also embodies computation actions, the
situation is slightly more complex. We know how to freely mix Esterel and Lustre
programs, although this has not been done yet. However, the existing Esterel and
Lustre compilers produce the same object code.

Phil. Trans. R. Soc. Lond. A (1992)

http://rsta.royalsocietypublishing.org/

